Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(37): 44354-44363, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37697629

RESUMO

Cellulose-based food packaging has a significant importance in reducing plastic pollution and also ensuring our safety from microplastics. Nonetheless, lignocellulose necessitates sophisticated physical and chemical treatments to be fashioned into a satisfactory food packaging, thus leading to extra consumption and operations. Here, we present a gel-assisted biosynthesis approach for the in situ production of bacterial cellulose (BC) that can be directly applied to food packaging. Komagataeibacter sucrofermentans is homogeneously distributed in the gellan gum (GG)-assisted culture system, and the BC/GG film with an even surface is attained. Then, the BC/GG film is integrated with an antibacterial layer containing a quaternary ammonium chitosan microsphere (QM) through an in situ spray biosynthesis method. The resulting BC/GG/QM multilayer film combines the barrier properties and antibacterial activity. The method for in situ biosynthesis is green, efficient, and convenient to endow the multilayer film with excellent barrier capacity (1.76 g·mm·m-2·d-1·KPa-1 at RH 75%), high mechanical properties (strength 462 MPa), and antibacterial activity (>90% against Escherichia coli O157:H7 and Staphylococcus aureus). In terms of food preservation, the overall performance of the BC/GG/QM multilayer film is better than the commercial petroleum-based film and lignocellulose-derived film. This work proffers a novel strategy to produce a more beneficial and eco-friendly multilayer film via in situ biosynthesis, which manifests great utility in the field of food packaging.


Assuntos
Celulose , Microplásticos , Fermentação , Embalagem de Alimentos , Plásticos , Antibacterianos/farmacologia , Carboximetilcelulose Sódica
2.
J Am Chem Soc ; 144(2): 935-950, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989224

RESUMO

The cationic porphyrin TMPyP4 is a well-established DNA G-quadruplex (G4) binding ligand that can stabilize different topologies via multiple binding modes. However, TMPyP4 can have both a stabilizing and destabilizing effect on RNA G4 structures. The structural mechanisms that mediate RNA G4 unfolding remain unknown. Here, we report on the TMPyP4-induced RNA G4 unfolding mechanism studied by well-tempered metadynamics (WT-MetaD) with supporting biophysical experiments. The simulations predict a two-state mechanism of TMPyP4 interaction via a groove-bound and a top-face-bound conformation. The dynamics of TMPyP4 stacking on the top tetrad disrupts Hoogsteen H-bonds between guanine bases, resulting in the consecutive TMPyP4 intercalation from top-to-bottom G-tetrads. The results reveal a striking correlation between computational and experimental approaches and validate WT-MetaD simulations as a powerful tool for studying RNA G4-ligand interactions.


Assuntos
Quadruplex G , Ligantes , Porfirinas/química , Cátions/química , Ligação de Hidrogênio , Substâncias Intercalantes/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Termodinâmica
3.
BMC Genomics ; 22(Suppl 5): 680, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789146

RESUMO

BACKGROUND: Reverse Transcription quantitative polymerase chain reaction (RT-qPCR) is a sensitive and reliable method for mRNA quantification and rapid analysis of gene expression from a large number of starting templates. It is based on the statistical significance of the beginning of exponential phase in real-time PCR kinetics, reflecting quantitative cycle of the initial target quantity and the efficiency of the PCR reaction (the fold increase of product per cycle). RESULTS: We used the large clinical biomarker dataset and 94-replicates-4-dilutions set which was published previously as research tools, then proposed a new qPCR curve analysis method--CqMAN, to determine the position of quantitative cycle as well as the efficiency of the PCR reaction and applied in the calculations. To verify algorithm performance, 20 genes from biomarker and partial data with concentration gradients from 94-replicates-4-dilutions set of MYCN gene were used to compare our method with various publicly available methods and established a suitable evaluation index system. CONCLUSIONS: The results show that CqMAN method is comparable to other methods and can be a feasible method which applied to our self-developed qPCR data processing and analysis software, providing a simple tool for qPCR analysis.


Assuntos
Perfilação da Expressão Gênica , Genes myc , Expressão Gênica , Humanos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Nucleic Acids Res ; 48(17): 9886-9898, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32453431

RESUMO

Obtaining phase information remains a formidable challenge for nucleic acid structure determination. The introduction of an X-ray synchrotron beamline designed to be tunable to long wavelengths at Diamond Light Source has opened the possibility to native de novo structure determinations by the use of intrinsic scattering elements. This provides opportunities to overcome the limitations of introducing modifying nucleotides, often required to derive phasing information. In this paper, we build on established methods to generate new tools for nucleic acid structure determinations. We report on the use of (i) native intrinsic potassium single-wavelength anomalous dispersion methods (K-SAD), (ii) use of anomalous scattering elements integral to the crystallization buffer (extrinsic cobalt and intrinsic potassium ions), (iii) extrinsic bromine and intrinsic phosphorus SAD to solve complex nucleic acid structures. Using the reported methods we solved the structures of (i) Pseudorabies virus (PRV) RNA G-quadruplex and ligand complex, (ii) PRV DNA G-quadruplex, and (iii) an i-motif of human telomeric sequence. Our results highlight the utility of using intrinsic scattering as a pathway to solve and determine non-canonical nucleic acid motifs and reveal the variability of topology, influence of ligand binding, and glycosidic angle rearrangements seen between RNA and DNA G-quadruplexes of the same sequence.


Assuntos
Cristalografia por Raios X/métodos , Motivos de Nucleotídeos , Quadruplex G , Herpesvirus Suídeo 1/química , Humanos , RNA Viral/química , Telômero/química
5.
RNA Biol ; 17(6): 816-827, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32070191

RESUMO

RNA secondary structure elements in the mRNA 3'-untranslated regions (3'UTR) play important roles in post-transcriptional regulation. RNA structure elements in the viral RNA provide valuable model for studying diverse regulation mechanisms. Herpesvirus genomes are double-stranded DNA with GC-rich sequences, which can be transcribed into abundant GC-rich RNAs. It is valuable to explore the structures and function of those GC-rich RNAs. We identified a G2-quadruplex-forming sequence named PQS18-1 in the 3'UTR of the unique immediate early gene of Pseudorabies virus (PRV), an important member of Alphaherpesvirinae subfamily. The RNA PQS18-1 was folded into parallel G-quadruplex structure, enhancing gene expression. Both non-G-quadruplex mutant and G3-quadruplex mutant in the 3'UTR showed lower gene expression level than the wildtype G2-quadruplex. TMPyP4 destroyed PQS18-1 G2-quadruplex and suppressed gene expression, accordingly reducing PRV replication by one titre in the PK15 cells at 24 h post infection. Our findings indicated that the RNA G2-quadruplex in 3'UTR was essential for high expression of IE180 gene, and it could be a specific post-transcription regulation element in response to small molecules or other macromolecules. This study discovers a novel RNA G2-quadruplex in the 3'UTR of an immediate early gene of alphaherpesvirus and provides a new nucleic acid target for anti-virus drug design.


Assuntos
Regiões 3' não Traduzidas , Quadruplex G , Regulação Viral da Expressão Gênica , Herpesvirus Suídeo 1/genética , Proteínas Imediatamente Precoces/genética , Pseudorraiva/virologia , Replicação Viral/genética , Animais , Sequência de Bases
6.
Molecules ; 24(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795541

RESUMO

Guanine-rich sequences in the genomes of herpesviruses can fold into G-quadruplexes. Compared with the widely-studied G3-quadruplexes, the dynamic G2-quadruplexes are more sensitive to the cell microenvironment, but they attract less attention. Pseudorabies virus (PRV) is the model species for the study of the latency and reactivation of herpesvirus in the nervous system. A total of 1722 G2-PQSs and 205 G3-PQSs without overlap were identified in the PRV genome. Twelve G2-PQSs from the CDS region exhibited high conservation in the genomes of the Varicellovirus genus. Eleven G2-PQSs were 100% conserved in the repeated region of the annotated PRV genomes. There were 212 non-redundant G2-PQSs in the 3' UTR and 19 non-redundant G2-PQSs in the 5' UTR, which would mediate gene expression in the post-transcription and translation processes. The majority of examined G2-PQSs formed parallel structures and exhibited different sensitivities to cations and small molecules in vitro. Two G2-PQSs, respectively, from 3' UTR of UL5 (encoding helicase motif) and UL9 (encoding sequence-specific ori-binding protein) exhibited diverse regulatory activities with/without specific ligands in vivo. The G-quadruplex ligand, NMM, exhibited a potential for reducing the virulence of the PRV Ea strain. The systematic analysis of the distribution of G2-PQSs in the PRV genomes could guide further studies of the G-quadruplexes' functions in the life cycle of herpesviruses.


Assuntos
DNA Viral/química , Quadruplex G/efeitos dos fármacos , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Suídeo 1/genética , Regiões 3' não Traduzidas/efeitos dos fármacos , Regiões 5' não Traduzidas/efeitos dos fármacos , Acridinas/química , Acridinas/farmacologia , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Animais , Bovinos , Linhagem Celular , Biologia Computacional/métodos , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Células HEK293 , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Humanos , Ligantes , Mesoporfirinas/química , Mesoporfirinas/farmacologia , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Suínos , Varicellovirus/efeitos dos fármacos , Varicellovirus/genética , Varicellovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Nucleic Acids Res ; 47(5): 2190-2204, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30759259

RESUMO

Nucleic acid mimics of fluorescent proteins can be valuable tools to locate and image functional biomolecules in cells. Stacking between the internal G-quartet, formed in the mimics, and the exogenous fluorophore probes constitutes the basis for fluorescence emission. The precision of recognition depends upon probes selectively targeting the specific G-quadruplex in the mimics. However, the design of probes recognizing a G-quadruplex with high selectivity in vitro and in vivo remains a challenge. Through structure-based screening and optimization, we identified a light-up fluorescent probe, 9CI that selectively recognizes c-MYC Pu22 G-quadruplex both in vitro and ex vivo. Upon binding, the biocompatible probe emits both blue and green fluorescence with the excitation at 405 nm. With 9CI and c-MYC Pu22 G-quadruplex complex as the fluorescent response core, a DNA mimic of fluorescent proteins was constructed, which succeeded in locating a functional aptamer on the cellular periphery. The recognition mechanism analysis suggested the high selectivity and strong fluorescence response was attributed to the entire recognition process consisting of the kinetic match, dynamic interaction, and the final stacking. This study implies both the single stacking state and the dynamic recognition process are crucial for designing fluorescent probes or ligands with high selectivity for a specific G-quadruplex structure.


Assuntos
Corantes Fluorescentes/análise , Quadruplex G , Genes myc/genética , Sondas Moleculares/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
8.
Artigo em Inglês | MEDLINE | ID: mdl-28111266

RESUMO

Two acetylcholinesterase genes (SlAce1 and SlAce2) were cloned from Spodoptera litura, which is an important pest that causes widespread economic damage to vegetables and ornamental plants. We analyzed their expression patterns and compared their biological functions by using RNA interference. Our results showed that SlAce1 and SlAce2 cDNA contains 2085bp and 1917bp nucleotides and encoding proteins of 694 and 638 amino acid residues, respectively. Phylogenic analysis indicated that the lineage of SlAce genes and SlAce1 was completely different from SlAce2. Although both genes were expressed in all developmental stages and majorly in the brain. The expression levels of the both genes were suppressed by inserting their related dsRNA in the 6th instar larvae, which led to 47.3% (SlAce1) and 37.9% (SlAce2) mortality. Interestingly, the suppression of the SlAce2 transcripts also led to significant reductions in the fecundity, hatching, and offspring in the parental generation of S. litura. It is concluded that SlAce2 is responsible for the hydrolysis of acetylcholine and also plays role in female breeding, embryo progress, and the development of progeny. Considerable larval mortality was observed after both AChE genes (i.e. Ace1 and Ace2) were silenced in S. litura confirms its insecticidal effectiveness, which provided a molecular basis in biological pest control approach.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Regulação Enzimológica da Expressão Gênica , Spodoptera/enzimologia , Spodoptera/genética , Acetilcolinesterase/química , Animais , Clonagem Molecular , Feminino , Inativação Gênica , Larva , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Filogenia , RNA de Cadeia Dupla/genética , Spodoptera/classificação
9.
Artigo em Inglês | MEDLINE | ID: mdl-25542738

RESUMO

Thioredoxins (Trxs) are a ubiquitous family of antioxidant enzymes that are involved in protecting organisms against various oxidative stresses. Here, we cloned and characterized two thioredoxins, named SlTrx1 and SlTrx2, from the common cutworm Spodoptera litura. SlTrx1 and SlTrx2, respectively, consist of 988 and 606 bp full-length cDNA with 318 and 447 bp open reading frames encoding 106 and 149 amino acid residues. Furthermore, the N-terminal region of SlTrx2 contains a predicted mitochondrial localization signal (33 amino acids). A phylogenetic relationship analysis revealed that SlTrx1 is in the cytosolic thioredoxin Trx1 cluster, whereas SlTrx2 is in the mitochondrial thioredoxin Trx2 cluster. Recombinant SlTrx1 (14 kDa) and SlTrx2 (16 kDa), expressed in baculovirus-infected insect Sf9 cells, demonstrated insulin disulfide reductase activity at the same optimum temperature and pH value of 35 °C and 7.0, respectively, in vitro. During S. litura development, we found that SlTrx1 and SlTrx2 had similar transcript expression patterns and were constitutively expressed in the epidermis, fat body, and midgut, with the highest expression occurring in the sixth-instar larval stage in the epidermis and midgut. In addition, both SlTrx1 and SlTrx2 mRNA were up-regulated in S. litura after injection with H2O2, cumene hydroperoxide, indoxacarb, and metaflumizone. These results suggest that SlTrx1 and SlTrx2 function as potent antioxidant enzymes, and provide a molecular basis for the roles SlTrx1 and SlTrx2 during development and the oxidative stress response of S. litura.


Assuntos
Proteínas de Insetos/metabolismo , Spodoptera/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Larva/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
10.
Bioresour Technol ; 102(14): 7099-102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21596560

RESUMO

In this paper, we reported a kind of exoelectrogens, Pseudomonas alcaliphila (P. alcaliphila) strain MBR, which could excrete phenazine-1-carboxylic acid (PCA) to transfer electron under alkaline condition in microbial fuel cells (MFCs). The electrochemical activity of strain MBR and the extracellular electron transfer mechanism in MFCs were evaluated by cyclic voltammetry (CV) and electricity generation curve measurement. The results indicated a soluble mediator was the key factor for extracellular electron transfer of strain MBR under alkaline condition. The soluble mediator was PCA detected by gas chromatography-mass (GC-MS) analyses.


Assuntos
Álcalis/farmacologia , Fontes de Energia Bioelétrica/microbiologia , Eletroquímica/métodos , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Catálise/efeitos dos fármacos , Eletricidade , Eletrodos , Elétrons , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Fenazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...